ScalingFactorComputer
- class jwst.background.background_sub_wfss.ScalingFactorComputer(p=1.0, maxiter=5, delta_rms_thresh=0, dispersion_axis=None)[source]
Bases:
objectHandle computation of scaling factor.
- Parameters:
- pfloat, optional
Percentile for sigma clipping on both low and high ends per iteration, default 1.0. For example, with
p=2.0, the middle 96% of the data is kept.- maxiterint, optional
Maximum number of iterations for outlier rejection. Default 5.
- delta_rms_threshfloat, optional
Stopping criterion for outlier rejection; stops when the rms residuals change by less than this fractional threshold in a single iteration. For example, assuming
delta_rms_thresh=0.1and a residual RMS of 100 in iteration 1, the iteration will stop if the RMS residual in iteration 2 is greater than 90. Default 0.0, i.e., ignore this and only stop atmaxiter.- dispersion_axisint, optional
The index to select the along-dispersion axis. Used to compute the RMS residual, so must be set if
rms_thresh > 0. Default None.
Methods Summary
__call__(sci, bkg, var[, mask])Call function for the class.
err_weighted_mean(sci, bkg, var)Remove any var=0 values, which can happen for real data.
Methods Documentation
- __call__(sci, bkg, var, mask=None)[source]
Call function for the class.
- Parameters:
- scindarray
The science data.
- bkgndarray
The reference background model.
- varndarray
Total variance (error squared) of the science data.
- maskndarray[bool], optional
Initial mask to be applied to the data, True where bad. Typically, this would mask out the real sources in the data.
- Returns:
- float
Scaling factor that minimizes sci - factor*bkg, taking into account residuals and outliers.
- ndarray[bool]
Outlier mask generated by the iterative clipping procedure.
- err_weighted_mean(sci, bkg, var)[source]
Remove any var=0 values, which can happen for real data.
- Parameters:
- scindarray
The science data.
- bkgndarray
The reference background model.
- varndarray
Total variance (error squared) of the science data.
- Returns:
- ndarray
New array with the weighted sum of array elements